
An Integrated Approach to Neural Network Design, Training, and
Inference

Amir Gholami1, Michael W. Mahoney2, Kurt Keutzer3

University of California, Berkeley
{amirgh,mahoneymw,keutzer}@berkeley.edu

Abstract— Finding the right Neural Network model and
training it for a new task requires considerable expertise
and extensive computational resources. Moreover, the process
often includes ad-hoc rules that do not generalize to different
application domains. These issues have limited the applicability
and usefulness of DNN models, especially for new learning
tasks. This problem is becoming more acute, as datasets and
models grow larger, which increases training time, making
random/brute force search approaches quickly untenable. In
large part, this situation is due to the first-order stochastic gra-
dient descent (SGD) methods that are widely-used for training
DNNs. Despite SGD’s well-known benefits, vanilla SGD tends
to perform poorly, and thus one introduces many (essentially
ad-hoc) knobs and hyper-parameters to make it work. It has
been found that these hyper-parameters are significantly more
sensitive to tuning in large scale training with SGD, and this
has impeded effective use of supercomputing systems. Here,
we argue that a multi-faceted approach is needed to address
these challenges by considering the full stack of neural network
architecture design, large scale training, and efficient inference
on edge platforms. This requires designing mechanisms to
better understand NN training and bridge the gap between
theoretical results for optimization, second order methods, and
high performance computing.

I. BACKGROUND AND SIGNIFICANCE

Deep Neural Networks (DNNs) have proven to be very
effective in diverse applications ranging from semantic seg-
mentation [1, 2] and detection [3, 4] in computer vision
to scientific applications such as astronomy [5], climate
science [6], and medical image analysis [7, 8]. In these
and many other applications of machine learning (ML) and
artificial intelligence (AI), finding the right DNN architec-
ture for a particular application and then training a high-
quality model requires extensive hyper-parameter tuning and
architecture search, often on very large data sets. The delay
associated with training DNNs is often the main bottleneck in
the design process, and this bottleneck limits the usefulness
of DNNs in many applications.

The most straightforward method for accelerating training
is to perform the so-called data parallel approach with
large batches [9]. However, to efficiently utilize distributed
processors, the batch size must grow with the number of
processes. In the ideal case, the hope is to decrease the
computational time proportional to the increase in batch size,
without any drop in generalization quality. However, this is
typically not the case; and, in fact, training with large batches
often results in poor generalization [10, 11]. It has been found
that large batch size training is more likely to converge
to the so-called “sharp” local minima, which often do not
generalize well. As opposed to this, small batch training has

Fig. 1. Reaching the next milestone in large scale machine learning,
requires a novel approach by integrating the full stack of designing Neural
Network architecture, training, and inference on a target hardware platform.
This requires development of new tools/hammers to gain more insight
into the problem such as through second-order methods, scalable training
methods that are robust to hyper-parameters, and direct integration of
inference constraints such as latency/power on a target hardware platform.

been found to converge to “flatter” local minima that do not
have this problem. However, the latter cannot be efficiently
scaled to parallel processes.

In order to address these drawbacks, many solutions have
been proposed [12–17]. However, these methods either work
only for particular models on particular datasets, or they
require massive hyper-parameter tuning. While extensive
hyper-parameter turning may result in good tables for pub-
lications, it is antithetical to the original motivation of using
large batch sizes to reduce training time in real applications.
This is still an open problem, and it has limited the effective
use of supercomputers for these computationally-intensive
AI/ML tasks. While one could naively use a supercomputer
and perform extensive hyper-parameter sweeps, this is not
possible for many large-scale tasks, it is not an efficient
use of computational resources, and it often undermines
the goal of scientific insight. For example, in our prior
work [18, 19] we showed that using large batch size training
with SGD leads to diminishing returns. Sample results are
shown in Fig. 2, where we show the achieved speed up by
increasing batch size for reaching a testing loss threshold. It
can be clearly seen that using larger batches does not lead
to speed up for a fixed testing loss target. In fact, it has been
observed that large batch size training with SGD requires
more iterations [20] to recover accuracy which limits the
overall speedups. That is even though larger batches can be
parallelized more efficiently from a systems perspective, but



Fig. 2. Speed up to a target testing accuracy versus batch size is shown for
both SGD and K-FAC for ResNet32 trained on CIFAR-10. The diminishing
returns effect can be seen for both K-FAC (circles) and SGD (triangles).
We can clearly see that using larger batches leads to significantly lower
speedups as compared to ideal line. For more details please see [19].

more work/iterations is needed to reach a target accuracy.
The main source for many of these problems stems from

the use of the first-order Stochastic Gradient Descent (SGD)
algorithm in training DNNs. While SGD has several well-
known benefits [21], it is also known to be very sensitive
to hyper-parameters such as step size (a.k.a. learning rate),
initialization, and momentum. These parameters vary widely
from one DNN model to another, sometimes by orders of
magnitude. This extreme sensitivity to tuning is exacerbated
when performing training with large batches [19]. Therefore,
one has to execute many (thousands of) tests to determine
the right hyper-parameter values. For example, one of the
problems with SGD training is that it uses the same step size
for all of the parameters, irrespective of curvature (Hessian)
information. Ideally, we want to use larger step sizes for
parameters that have small curvature, and vice versa. This
is illustrated in Fig. 3, where we show the top Hessian
eigenvalue for different layers of Inception-V3 trained on Im-
ageNet dataset. One can clearly see that there is an order of
magnitude difference in the associated curvature information.
For example, the loss landscape of the last layer of Inception-
V3 has very small curvature, which means that a larger step
size should be used for those parameters, as opposed to the
second layer, which has three orders of magnitude larger
curvature, and which thus needs a much smaller step size.
Adaptive variants of SGD have been proposed to address this
(e.g., AdaGrad and ADAM), but they work only somewhat
reliably, and they only work for particular problems.

To address these problems, a multi-faceted approach is
needed that can encapsulate the full stack of designing,
training, and executing the DNN model on a target hardware
platform. All of these stages are interconnected, and focusing
only on one area will lead to sub-optimal solutions. This
requires designing mechanisms to better understand DNN
training and bridging the gap between (i) theoretical results
for optimization, (ii) second order methods, and (iii) high
performance computing.

Along the first direction, we need to develop a more
practical theory for training NNs to enable large scale

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

100

101

102

Blocks→

T
op

H
es
si
an

E
ig
en
va
lu
e→

Inception-V3 on ImageNet

−0.4
−0.2

0
0.2

0.4 −0.4 −0.2 0 0.2 0.4

0

0.5

1

ε1

ε2

L
os
s(
L
og
)

2nd Block λ0 = 581.9

−0.4
−0.2

0
0.2

0.4 −0.4 −0.2 0 0.2 0.4

0

0.5

1

ε1

ε2

L
os
s(
L
og
)

17th Block λ0 = 0.7

Fig. 3. Top eigenvalue of each individual block of pre-trained Inception-V3
on ImageNet. Note that the magnitudes of eigenvalues of different blocks
varies by orders of magnitude [30].

training of NNs with more robust and interpretable methods.
For example, our recent work has developed new theoretical
results in the use of higher order optimization methods and
in particular their strength and weaknesses as compared to
SGD [22–26]. Along the second direction, we have devel-
oped the PyHessian framework, which is an open source
library that enables fast computation of Hessian spectrum.
This includes the top eigenvalue, trace, and even the full
Eigenvalue Spectral Density of the Hessian for DNNs [11,
27]. This has lead to new insights in large scale training of
DNNs [11, 28], adversarial robustness [29], and development
of a novel Hessian AWare Quantization framework [30–33].
The latter has become the state-of-the-art for compressing
DNN models through quantization.

Along the third direction, we have developed new methods
to scale training by using the so-called integrated parallelism
which is based on communication-avoiding algorithms [9].
The algorithm enables distributing the computations by find-
ing optimal partitioning of the data and model, and avoids
the problems of large batch size training. Mesh TensorFlow
library is a recent work from Google that has used this
approach and implemented it in TensorFlow [34].

II. CONCLUSIONS

One promising solution to address the challenges as-
sociated with large scale training of DNN models is to
incorporate recent advances in theory, second-order opti-
mization, and high performance computing. Our recent work,
has focused on developing the infrastructure required to
address these challenges. In particular, we have developed
PyHessian [27, 35] a novel library for second-order based
analysis of DNN models, HAWQ [30–33, 36] a library for
compressing DNN models for efficient inference at the
edge, and integrated parallelism [37] a new algorithm which
enables scaling training without changing hyper-parameters.

The next milestone in enabling efficient large scale training
of DNN models can be achieved by encapsulating the full
stack of training, designing, and executing the DNN model
on a target hardware platform. These three phases are intri-
cately related and only focusing on one aspect, will not lead
to optimal solutions.



REFERENCES

[1] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2015, pp. 3431–3440.

[2] B. Wu, A. Wan, X. Yue, and K. Keutzer, “Squeezeseg: Convolutional
neural nets with recurrent crf for real-time road-object segmentation
from 3d lidar point cloud,” in In Review, 2017.

[3] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-
time object detection with region proposal networks,” in Advances in
neural information processing systems, 2015, pp. 91–99.

[4] B. Wu, F. Iandola, P. H. Jin, and K. Keutzer, “Squeezedet: Unified,
small, low power fully convolutional neural networks for real-time
object detection for autonomous driving,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops,
2017, pp. 129–137.

[5] B. Naul, J. S. Bloom, F. Pérez, and S. van der Walt, “A recurrent
neural network for classification of unevenly sampled variable stars,”
Nature Astronomy, vol. 2, no. 2, p. 151, 2018.

[6] T. Kurth, S. Treichler, J. Romero, M. Mudigonda, N. Luehr, E. Phillips,
A. Mahesh, M. Matheson, J. Deslippe, M. Fatica et al., “Exascale deep
learning for climate analytics,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage,
and Analysis. IEEE Press, 2018, p. 51.

[7] M. Havaei, A. Davy, D. Warde-Farley, A. Biard, A. Courville,
Y. Bengio, C. Pal, P.-M. Jodoin, and H. Larochelle, “Brain tumor
segmentation with deep neural networks,” Medical image analysis,
vol. 35, pp. 18–31, 2017.

[8] A. Mang, S. T. A. Gholami, N. Himthani, S. Subramanian, J. Levitt,
M. Azmat, K. Scheufele, M. Mehl, C. Davatzikos, B. Barth, and
G. Biros, “SIBIA-GlS: Scalable biophysics-based image analysis for
glioma segmentation,” The multimodal brain tumor image segmenta-
tion benchmark (BRATS), MICCAI, 2017.

[9] A. Gholami, A. Azad, P. Jin, K. Keutzer, and A. Buluc, “Inte-
grated model, batch and domain parallelism in training neural net-
works,” ACM Symposium on Parallelism in Algorithms and Architec-
tures(SPAA’18), 2018, [PDF].

[10] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P.
Tang, “On large-batch training for deep learning: Generalization gap
and sharp minima,” arXiv preprint arXiv:1609.04836, 2016.

[11] Z. Yao, A. Gholami, Q. Lei, K. Keutzer, and M. W. Mahoney,
“Hessian-based analysis of large batch training and robustness to
adversaries,” Advances in Neural Information Processing Systems,
2018.

[12] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Ky-
rola, A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch sgd:
training imagenet in 1 hour,” arXiv preprint arXiv:1706.02677, 2017.

[13] Y. You, I. Gitman, and B. Ginsburg, “Scaling sgd batch size to 32k
for imagenet training,” arXiv preprint arXiv:1708.03888, 2017.

[14] A. Devarakonda, M. Naumov, and M. Garland, “Adabatch: Adap-
tive batch sizes for training deep neural networks,” arXiv preprint
arXiv:1712.02029, 2017.

[15] S. L. Smith, P.-J. Kindermans, and Q. V. Le, “Don’t decay the learning
rate, increase the batch size,” arXiv preprint arXiv:1711.00489, 2017.

[16] X. Jia, S. Song, W. He, Y. Wang, H. Rong, F. Zhou, L. Xie, Z. Guo,
Y. Yang, L. Yu et al., “Highly scalable deep learning training system
with mixed-precision: Training imagenet in four minutes,” arXiv
preprint arXiv:1807.11205, 2018.

[17] Y. You, J. Hseu, C. Ying, J. Demmel, K. Keutzer, and C.-J.
Hsieh, “Large-batch training for lstm and beyond,” arXiv preprint
arXiv:1901.08256, 2019.

[18] N. Golmant, N. Vemuri, Z. Yao, V. Feinberg, A. Gholami,
K. Rothauge, M. W. Mahoney, and J. Gonzalez, “On the
computational inefficiency of large batch sizes for stochastic gradient
descent,” CoRR, vol. abs/1811.12941, 2018. [Online]. Available:
http://arxiv.org/abs/1811.12941

[19] L. Ma, G. Montague, J. Ye, Z. Yao, A. Gholami, K. Keutzer, and
M. W. Mahoney, “Inefficiency of k-fac for large batch size training,”
AAAI’20 (arXiv:1903.06237), 2020.

[20] E. Hoffer, I. Hubara, and D. Soudry, “Train longer, generalize better:
closing the generalization gap in large batch training of neural net-
works,” in Advances in Neural Information Processing Systems, 2017,
pp. 1731–1741.

[21] L. Bottou, “Large-scale machine learning with stochastic gradient
descent,” in Proceedings of the 19th International Conference on
Computational Statistics (COMPSTAT’2010), 2010, pp. 177–187.

[22] P. Xu, F. Roosta-Khorasan, and M. W. Mahoney, “Second-order
optimization for non-convex machine learning: An empirical study,”
arXiv preprint arXiv:1708.07827, 2017.

[23] P. Xu, F. Roosta-Khorasani, and M. W. Mahoney, “Newton-type meth-
ods for non-convex optimization under inexact hessian information,”
arXiv preprint arXiv:1708.07164, 2017.

[24] F. Roosta-Khorasani and M. W. Mahoney, “Sub-sampled new-
ton methods i: globally convergent algorithms,” arXiv preprint
arXiv:1601.04737, 2016.

[25] ——, “Sub-sampled newton methods ii: Local convergence rates,”
arXiv preprint arXiv:1601.04738, 2016.

[26] F. Roosta, Y. Liu, P. Xu, and M. W. Mahoney, “Newton-mr:
Newton’s method without smoothness or convexity,” arXiv preprint
arXiv:1810.00303, 2018.

[27] (2019, Sep.) https://github.com/amirgholami/pyhessian.git.
[28] Z. Yao, A. Gholami, K. Keutzer, and M. Mahoney, “Large batch size

training of neural networks with adversarial training and second-order
information,” arXiv preprint arXiv:1810.01021, 2018.

[29] Z. Yao, A. Gholami, P. Xu, K. Keutzer, and M. Mahoney, “Trust
region based adversarial attack on neural networks,” Computer Vision
and Pattern Recognition (CVPR’19), 2018.

[30] Z. Dong, Z. Yao, A. Gholami, M. Mahoney, and K. Keutzer, “Hawq:
Hessian aware quantization of neural networks with mixed-precision,”
Accepted in International Conference on Computer Vision (ICCV)
preprint arXiv:1905.03696, 2019.

[31] S. Shen, Z. Dong, J. Ye, L. Ma, Z. Yao, A. Gholami, M. W.
Mahoney, and K. Keutzer, “Q-bert: Hessian based ultra low precision
quantization of bert,” Accepted in AAAI-20 (arXiv:1909.05840), 2019.

[32] Z. Dong, Z. Yao, D. Arfeen, Y. Cai, A. Gholami, M. Mahoney, and
K. Keutzer, “Trace weighted hessian-aware quantization,” NeurIPS’19
workshop on Beyond First-Order Optimization Methods in Machine
Learning, 2019.

[33] Y. Cai, Z. Yao, Z. Dong, A. Gholami, M. W. Mahoney, and K. Keutzer,
“Zeroq: A novel zero shot quantization framework,” arXiv preprint
arXiv:2001.00281, 2020.

[34] N. Shazeer, Y. Cheng, N. Parmar, D. Tran, A. Vaswani, P. Koanan-
takool, P. Hawkins, H. Lee, M. Hong, C. Young et al., “Mesh-
tensorflow: Deep learning for supercomputers,” in Advances in Neural
Information Processing Systems, 2018, pp. 10 414–10 423.

[35] Z. Yao, A. Gholami, K. Keutzer, and M. Mahoney, “PyHessian: Neural
Networks through the lens of the Hessian,” under review, 2019.

[36] (2020, Jan.) https://github.com/amirgholami/zeroq.git.
[37] A. Gholami, K. Kwon, B. Wu, Z. Tai, X. Yue, P. Jin, S. Zhao, and

K. Keutzer, “Squeezenext: Hardware-aware neural network design,”
Workshop paper in CVPR, 2018.

https://arxiv.org/pdf/1712.04432.pdf
http://arxiv.org/abs/1811.12941

	Background and Significance
	Conclusions
	References

