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Tycho Brahe gathered considerable and accurate data on the movement of the planets (“big data” 
for his time). However, this data did not find real value until Johannes Kepler used it to discover 
his three laws of planetary motion. Later Isaac Newton used these laws and other data to derive his 
unified laws of motion and laid the foundations of classical physics. To do so, he had to invent 
calculus for describing such things as rates of change. Brahe, Kepler, and Newton were all engaged 
in the practice of science, a systematic process for acquiring knowledge through observation or 
experimentation and developing theories to describe and explain natural phenomena. The scientific 
process that they engaged in is summarized in Figure 1.  

Typically, scientific inquiry starts with a 
question within a domain of study, e.g., 
biology. With the question in hand, one 
has to assemble the background 
information and acquire the data 
necessary to answer the question. Then 
one proceeds to construct one or more 
models from data (and background 
information). Choosing a small set of 
models from among a much larger set of 
candidates involves additional 

 
1 Some of the material in this white paper has been adapted from: (i) Honavar V., Hill M., & Yelick K. (2016). Accelerating 
Science: A Computing Research Agenda. A white paper prepared for the Computing Community Consortium committee of the 
Computing Research Association. arXiv:1604.02006  and (ii) Honavar V., Yelick K., Nahrstedt K., Rushmeier H., Rexford J., 
Hill M., Bradley E., & Mynatt E. (2017). Advanced Cyberinfrastructure for Science, Engineering, and Public Policy. A white 
paper prepared for the Computing Community Consortium committee of the Computing Research Association. 
arXiv:1707.00599 
 
2 Professor and Edward Frymoyer Chair of Information Sciences and Technology; Professor, Computer Science, 
Bioinformatics and Genomics, Informatics, and Neuroscience Graduate Programs; Professor, Data Sciences 
Undergraduate Program; Director, Artificial Intelligence Research Laboratory; Director, Center for Big Data 
Analytics and Discovery Informatics; Associate Director, Institute for Computational and Data Sciences; Co-PI, 
Northeast Big Data Innovation Hub; Co-PI, Virtual Data Collaboratory; Steering Committee Member, Eastern 
Regional Network 

Figure 1: Major Components of the Scientific Process 



considerations (simplicity, consistency with what else is known), etc. The models can be used to 
advance hypotheses that result, ideally, in testable predictions. The observations or experiments 
designed to test the predictions yield additional data that feed into the larger scientific process. 
Science is a social endeavor, with multiple individuals and teams, driven by intrinsic as well as 
extrinsic incentives. Scientific findings go through peer review, communication, and publication, 
and replication before they are integrated into the larger body of knowledge in the relevant 
discipline. It is worth noting that there is considerable variability across scientific disciplines, e.g., 
in cosmology, where there is little possibility of executing designed experiments, one typically has 
to make do with observational data or the results of ‘natural’ experiments. Nevertheless, it is clear 
that the processes of acquiring, organizing, verifying, validating, integrating, analyzing, reasoning 
with, and communicating information (models, hypotheses, theories, explanations) about natural 
and built systems lie at the heart of the scientific enterprise. The past centuries have witnessed major 
scientific breakthroughs as a result of advances in instruments of observation, formalisms for 
describing the laws of nature, improved tools for calculation, and infusion of concepts, tools, and 
scientific practices across disciplines. 

Today, the experimental instruments are more powerful, the scientific questions more complex, and 
the mathematical, statistical and computational methods for analyzing data have become more 
sophisticated. The resulting emergence of “big data” offers unprecedented opportunities for 
accelerating science. Arguably, “big data” accelerates Brahe’s part of the scientific endeavor, and 
increasingly, Kepler’s part, with the increasing use of machine learning for building models from 
data. Nevertheless, most other aspects of the scientific process (understanding the current state 
of knowledge, formulating questions, designing studies, assembling and managing research 
teams, identifying designing, prioritizing, optimizing and executing experiments, organizing 
and integrating data, knowledge, and assumptions to draw inferences and interpret and 
explain results) constitute an even greater bottleneck than ever.  

In what follows, I will argue that: Accelerating science calls for foundational advances in 
Artificial Intelligence and the translation of the resulting advances into cognitive tools that 
amplify, augment, and extend human intellect and abilities through advanced 
cyberinfrastructure for science. 

Algorithmic Abstractions of Scientific Domains. Today, algorithmic abstractions increasingly 
play, across many sciences, the role played by calculus or more generally, mathematics, in the 
emergence of physics. For example, in biology, we will have a theory of protein folding when we 
can specify an algorithm that takes as input, a linear sequence of amino acids that make up the 
protein (and the relevant features of the cellular environment in which folding is to occur), and 
produces as output, a description of the 3-dimensional structure of the protein (or more precisely, 
a set of stable configurations). In cognitive science, we will have a theory of learning from 
experience, when we have an algorithm that learns from observations and experiments. 
Algorithmic abstractions of the relevant natural entities, relations, and processes in a scientific 
domain (e.g., biology) allow us to examine the domain through the computational lens and 
formulate and answer scientific questions in the domain in algorithmic terms. Once created, the 
algorithmic abstractions become first class computational artifacts in their own right that can be 



analyzed, shared, and integrated with other related artifacts, contributing to the acceleration of 
science. The creation of sufficiently expressive, yet practically useful algorithmic abstractions 
of scientific domains calls for major advances in AI, including in particular, knowledge 
representation, knowledge elicitation, and machine learning. Cyberinfrastructure for 
science must provide the necessary tools and infrastructure for the collaborative creation, 
sharing, and use of algorithmic abstractions of scientific domains. 

Algorithmic Abstractions of the Scientific Process: The scientific enterprise (See Figure 1), 
entails acquiring, organizing, verifying, validating, integrating, analyzing, reasoning with, and 
communicating information bearing scientific artifacts, namely, experiments, data, models, 
hypotheses, theories, and explanations associated with natural or built systems lie at the heart of the 
scientific enterprise. Hence, computing, which offers a powerful medium for digital representation 
and manipulation of information artifacts offers a powerful formal framework and exploratory 
apparatus for science. It also offers the theoretical and experimental tools for the study of the 
feasibility, structure, expression, and, when appropriate, automation of (aspects of) the scientific 
process, the structure and organization of collaborative teams, modeling the evolution of scientific 
disciplines, and measuring the impact of scientific discoveries. The creation and realization of 
algorithmic abstractions of the scientific process calls for foundational advances across 
multiple areas of AI, including knowledge representation, planning, optimization, search, 
multi-agent communication and coordination, natural language processing, information 
extraction, machine learning, among others. Cyberinfrastructure for science must provide 
generalizable, modular, extensible, interoperable infrastructure and tools for accelerating 
science by (i) whenever feasible, automating aspects of science (well beyond building 
predictive models from data using machine learning, and compute and data intensive 
simulations). 

Cognitive tools for Amplifying, Augmenting, and Extending Human Intellect and Abilities: 
Accelerating science requires effective computational tools for mapping the current state of 
knowledge in a discipline and identifying the major gaps; Generating and prioritizing questions 
that are ripe for investigation; Extracting and organizing descriptions of experimental protocols, 
scientific claims, supporting assumptions, and validating scientific claims from scientific 
literature, and increasingly scientific databases and knowledge bases; Literature-based discovery, 
including methods for drawing inferences and generating hypotheses from existing knowledge in 
the literature (augmented with discipline-specific databases and knowledge bases of varying 
quality when appropriate), and ranking the resulting hypotheses; Expressing, reasoning with, and 
updating scientific arguments (along with supporting assumptions, facts, observations), including 
languages and inference techniques for managing multiple, often conflicting arguments, assessing 
the plausibility of arguments, their uncertainty and provenance; Observing and experimenting, 
including describing and harmonizing the measurement process and data models, capturing and 
managing data provenance, describing, quantifying the utility, cost, and feasibility of experiments, 
comparing alternative experiments, and choosing optimal experiments (in a given 
context);Navigating the spaces of hypotheses, conjectures, theories, and the supporting 
observations and experiments; Analyzing and interpreting the results of observations and 



experiments, including modeling the measurement process, its bias, noise, resolution; 
incorporating constraints e.g., those derived from physics, into data- driven inference; closing the 
gap between model builders and model users by producing models that are expressible in 
representations familiar to the disciplinary scientists; Synthesizing, in a principled manner, the 
findings, e.g., causal relationships from disparate experimental and observational studies. The 
development of cognitive tools for scientists requires foundational advances in AI. Realizing 
the promise and potential of such cognitive tools to accelerate science requires advanced 
cyberinfrastructure for implementing, validating, deploying, and operating the tools. 

Advanced Cyberinfrastructure for Collaborative Science: Because major activities in science 
increasingly require on collaboration across disciplinary as well as organizational boundaries, 
there is a need for data and computational infrastructure to support: Organizing and participating 
in team projects, including tools for decomposing tasks, assigning tasks, integrating results, 
incentivizing participants, and engaging large numbers of participants with varying levels of 
expertise and ability in the process; Collaborating, communicating, and forming teams with 
partners with complementary knowledge, skills, expertise, and perspectives on problems of 
common interest (including problems that span disciplinary boundaries or levels of abstraction, 
and call for collaboration across government, industry and academia); Creating and sharing of 
human understandable and computable representations of the relevant artifacts, including data, 
experiments, hypotheses, conjectures, models, theories, workflows, etc. across organizational and 
disciplinary boundaries; Documenting, sharing, reviewing, replicating, and communicating entire 
studies in the form of reproducible and extensible workflows (with provision for capturing data 
provenance); Automating the discovery, adaptation, and when needed, assembly of complex 
analytic workflows from available components; Communicating results of studies or 
investigations and integrating the results into the larger body of knowledge within or across 
disciplines or communities of practice; Tracking scientific progress, the evolution of scientific 
disciplines, and impact on science, engineering, or public policy. Amplifying, augmenting, and 
extending human intellect and abilities to accelerate science, calls for fundamental advances 
in AI, especially, human-machine, machine-machine, and machine mediated human-human 
collaboration; and advanced cyberinfrastructure  collaborative science across disciplinary 
and institutional boundaries.    

Transparent, trustworthy, accountable cyberinfrastructure for science: As scientific 
advances rely on data (including sensitive data), infrastructure, and tools beyond those that any 
individual scientist can fully comprehend or manage, there is a need for: Computable data access 
and usage agreements that can be enforced within a secure cyberinfrastructure; Audit mechanisms 
that can be used to verify compliance with the applicable data access and use policies; Repositories 
of data and their usage agreements that can be adapted and reused in a variety of settings; Agile 
and secure computing and network services and protocols that can accommodate different types 
and vintages of instruments;   Access privileges that are responsive to the changing needs and roles 
of individuals; Distributed data management systems or virtual federated collaboratories that 
enable seamless sharing of data, computational resources, analysis tools, and results across 
disciplinary and organizational boundaries while ensuring compliance with applicable security as 



well as data access and use policies; Sustainable model for data and long-term preservation of both 
data and the software needed to make use of it; Data and software provenance and other 
mechanisms for ensuring transparency and reproducibility of data analysis, modeling, etc., 
detecting, and correcting for implicit or explicit biases or errors in the data as well as the 
algorithms. Accelerating science calls for advanced cyberinfrastructure, policy frameworks, 
and tools for ensuring  the  transparency, trustworthiness, and accountability of   advanced 
cyberinfrastructure for science.   

Education and Training: Realizing the promise and potential of advances in AI and  
cyberinfrastructure to accelerate science calls for: a diverse cadre of scientists who combine deep 
expertise in a scientific domain that have the knowledge and skills to develop and utilize 
algorithmic abstractions within their scientific domain; interdisciplinary teams  of scientists and 
engineers   to design, implement, and study end-to-end systems that flexibly integrate the relevant 
cognitive tools into complex workflows to solve broad classes of problems in specific domains;  
organizational,  social, behavioral and cognitive scientists to study cyberinfrastructure enabled 
team science and discover, and translate to practice how best to organize and incentivize such 
teams to optimize their effectiveness; and  organizational changes and funding models   that 
catalyze  the acceleration  of science through advances in AI and cyberinfrastructure




