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Abstract: Relational algebra (RA) comprises an important basis of operations, conspicuously sparse in
the HPC literature. It can be used to implement a variety of algorithms in satisfiability and constraint
solving [4], graph analytics [6], program analysis and verification [3], deductive databases [2], and machine
learning [5]. Many of these applications are, at their heart, cases of logical inference; a basis of performant
relational algebra is sufficient to power state-of-the-art forward reasoning engines for Datalog and related
logic-programming languages. Declarative logic programming offers the promise of unifying specification
and implementation, permitting programmers to focus on writing correct and maintainable code, and per-
mitting its operational evaluation to be synthesized automatically. Despite its expressive power, relational
algebra has not received the same attention in high-performance-computing research as more common prim-
itives like stencil computations, floating-point operations, numerical integration, and sparse linear algebra.
Furthermore, specific challenges in permitting fixed-point iteration, in addressing representation and com-
munication among distributed portions of a relation, and in balancing inherently unbalanced relations, have
previously thwarted successful scaling of relational algebra applications to HPC platforms. We are devel-
oping a set of efficient algorithms to effectively parallelize and scale key relational algebra primitives. We
aim to develop foundational theory, practical implementations, and rigorous evaluations of our approach
on three important application domains with the ultimate goal of enabling massively parallel distributed
reasoning on cluster computers directed by expressive, ergonomic, rule-based languages.

Applications: To evaluate the scalability of our parallel RA infrastructure, we focus on three applications:
graph mining (E1), static program analysis (E2), and deductive databases for physical simulation data
(E3). Figure 1 shows the overall pipeline we propose; the top shows our three experimental applications,
sitting atop a platform for logical inference, implemented with relational algebra that the techniques under
investigation (T1-T3) supports.

Typical graph computational algorithms are not
suited for mining tasks that aim to discover complex
structural patterns of a graph. Extracting such fea-
tures such as paths, cliques, frequent subgraphs, etc,
is straightforward to implement using relational al-
gebra. We focus on two fundamental graph-mining
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ply an iterated sequence of relational join, projec-
tion, and union, until a fixed point is reached. Sec-
ond, we focus on static program analysis (E2), a
vital logical inference problem that exemplifies the
power of our approach. Static analysis brings in
substantial task- and data-parallelism, as well as
evolution in balancing requirements across time. Fi-
nally, we focus on deductive database applications
and the use of relational algebra as a combined stor-
age and-inference system (E3). Of particular interest to us is the possibility that logical inference can benefit
traditional HPC problems for feature extraction in an automated way.
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Figure 1: An overview of our pipeline: our
application-foci are implemented as bottom-up logi-
cal inference, implemented as task- and data-parallel
relational algebra, built using the specific techniques
we investigate in our proposed work.
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first step in a join operation is an intra-bucket commu- (a) (b) (c)
nication (Figure 2a) phase within each bucket so that

every subbucket receives all tuples for the outer relation Figure 2: (a) Intra-bucket communication; each
across all subbuckets (while the inner relation only needs subbucket of Ta sends its data to all subbuckets of
tuples belonging to the local subbucket). Following this, G. (b) Local, per-subbucket joins (including projec-
a local join operation (with any necessary projection and tion and re-hashing). (c) All to all communication.
renaming) is performed in every subbucket (Figure 2b),

and, as output tuples may each belong to an arbitrary bucket in the output relation, an MPI all-to-all
communication phase (Figure 2c¢) shuffles the output of all joins to their managing processes (preparing
them for any subsequent iteration).

Results: The transitive closure (T) of an input graph (G) is iteratively
extended by adding new paths discovered by a join operation until a fixed
point is reached, and no new paths can be added to T. We performed
strong scaling analysis for a graph with edge count 2,100,225 (mc2depi),
varying the number of processes from 4,096 to 32,768. Figure 3 shows
a preliminary strong-scaling study. We observed decent scaling to about
16k cores, producing a graph of over 276 billion paths. To the best of
our knowledge, this is the largest such feature extraction now described in
the literature. Given that this approach does not use any load balancing
and does nothing to optimize a synchronous use of MPI’s A1l to_allv
primitive, this scaling plot is a promising proof-of-concept that iterated
joins on graphs derived from real applications will be scalable to 10k+
processes.

Strong scaling: Edge count of transitive closure
276,491,930,625
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Conclusion and research direction: Effective declarative programming represents a long-standing
dream of computing—exchanging code describing how to compute for code simply describing what to
compute. Instead of requiring programmers to themselves balance the vying concerns of correctness, main-
tainability, and scalability in each task, declarative programming languages permit users to focus on the first
two concerns, writing high-level specifications of what should be computed, while allowing the underlying
implementation (i.e.,how the operational mechanics of the program work) to be extracted automatically.
With this research we are making inroads by developing techniques for parallelizing relational algebra as a
platform for declarative logical inference tasks. Our research is motivated by applications from the domain
of graph analysis (feature extraction), static program analysis (reverse engineering, component verification,
exploit generation, etc), and deductive databases (statistical and topological features).
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