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Abstract: Cyber Infrastructure (CI) is increasingly harnessed and is expanding to support the use of 
artificial intelligence (AI) techniques and applications to enable smart cities, power grids, computational 
simulations, real-time processing in big-data experiments (LIGO), supercomputing, and other important 
innovations.  Computation is essential to developing and using the analytics while CI networks and data 
facilities are central to moving and managing the immense volumes of data that enable progress and 
insight.  Just as AI offers opportunities to revolutionize all aspects of our lives, the potential for improving 
the design, evolution, optimization, performance, operation, security and sustainability of the CI is equally 
promising. A convergent research and implementation approach is required to enable the application of AI 
for the CI, comprising experts across the spectrum of cyberinfrastructure research, design, and deployment; 
computer and computational sciences; and systems design and engineering. 
Introduction: All domain science and commerce depend heavily on a robust Cyber Infrastructure (CI) 
comprising hardware and software systems across ranges of scale (from embedded devices to high 
performance computing (HPC)), functionalities (from sensing to computational modeling to data analytics 
to visualization, from data management to communications), and architectures (from centralized to 
distributed, from tightly coordinated to autonomous, with a wide diversity of underlying technology). All 
aspects of NSF’s, and indeed the nation’s, endeavors depend on the creation of scientific and engineering 
capabilities through the orchestration of CI layers and components that is only increasing as intelligence 
and autonomy are integrated into all layers and components.  Harnessing the power and capacity of current 
and future CI technologies presents unique and time critical challenges that must be identified, understood, 
and addressed to maintain and increase the nation’s leadership in scientific, industrial, and societal 
innovation and discovery.  
CI is increasingly harnessed to support artificial intelligence1 (AI) techniques and applications to enable 
innovation for smart cities, power grids, real-time processing in big-data experiments (such as LIGO), 
supercomputing simulations, and others.  Computation is essential to developing and using the requisite 
analytics, while CI networks and data facilities are central to acquiring, moving and managing the immense 
volumes of data required. Just as AI offers promises to revolutionize all aspects of our lives, the potential 
for improving the design, evolution, optimization, performance, operation, security and sustainability of CI 
is equally promising. Following the terminology used in the NSF Big Data and Extreme Computing 
Workshop series we refer to AI applied to challenges of improving Cyber Infrastructure as AI for CI [1]. 
A convergent research approach is required to explore the application of AI for CI, comprising experts from 
across the spectrum of cyberinfrastructure research, design, and deployment; computer and computational 
sciences; and systems design and engineering. To this end, we propose to create a National AI for CI 
research and development effort to drive transformative exploration of CI using AI methods including areas 
ranging from CI performance and optimization to the concept of enabling scientists to specify high-level 
science objectives from which workflows might be constructed and resources (hardware, software, data) 
might be assigned and made available.  
There are clear needs for AI innovations and implementations focused on the CI itself to build a new 
multidisciplinary community of AI and CI researchers. It will include people designing, implementing and 
supporting CI across the entire CI spectrum (from the largest to the smallest systems, from the tightest to 
loosest integration); and core AI/ML experts who can explore the use of AI to improve the effectiveness and 
efficiency of CI design and implementations.   

 
1 while there are differences in implementations and use of Machine Learning, Deep Learning and Artificial Intelligence, 
there are related for the sake of this paper we will refer to all methods as AI 
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Conceptual Framework: Harnessing AI to Reinvent Cyber Infrastructure: Machine Learning (ML), 
Deep Learning (DL), and AI have recently become important and practical alternative methods for data-
driven discovery in a number of science and engineering domains including physics, agriculture, natural 
language processing, facial and object recognition, imaging, and automation. Recent successes have been 
enabled a combination of massive increases in raw processing power, the availability of exponentially 
increasing data for analysis and learning and successes in algorithms for applying that processing power 
to solving AI problems.  All of these areas now rely on powerful and stable CI to apply AI methods to 
accomplish their domain science goals and innovation.   
These examples of using CI to empower AI represent tremendous research opportunities [5]. CI is complex, 
vast, expensive, and can be difficult to use effectively.   AI for CI endeavors will help reduce errors, decrease 
the time needed to rectify problems, faults and inefficiencies, and significantly decrease barriers to 
improving AI and other application performance. 
Disease vectors are increasing at an alarming rate with the increase in travel and export/import on a global 
scale as evidenced by the two recent outbreaks in coronavirus and aggressive flu epidemics. Creating 
timely cures and modeling contagion spread requires sophisticated CI that is currently lacking (e.g., 
distributed sensors coupled with computation, global connections of medical providers, etc.) All aspects of 
enabling this acceleration hinge on our ability to efficiently build and harness the CI that is integral to all 
aspects of modern technology. This is but one example of current and urgent problems; improving the CI 
addresses many other science, research, and engineering innovations needs that will enable acceleration 
of productivity and decreased time to insight/solution across all disciplines.  Enhancing prediction of severe 
weather, reducing time to discovery of new drugs and new materials, understanding our changing earth 
and these changes impacts on society and security, reducing energy use and increasing efficiency, 
understanding human behavior, understanding the universe’s origin and function, and many other areas all 
rely on fundamentally and dramatically improving how our CI works.  With the rate for hardware enabled 
improvements decreasing we must increasingly rely on much smarter and more effective software. 
To enable the end goal of accelerating discovery, it is critical that we incorporate AI improvements in our 
CI starting now.  The urgency comes from two parallel time-critical issues.  First, AI for CI can enable 
important improvements to the existing and soon to be deployed CI over the next 5 years but only if we 
begin work immediately.  Possibly even more important, new, long lasting CI architectures and systems are 
being designed today and it is imperative to their future performance that the new architectures incorporate 
AI in their CI in a comprehensive and efficient manner from the ground up. 
The Human-in-the-Loop (HIL) methods prevalent in many aspects of CI operations today are too limited 
when dealing with complexities for even small CI implementations and may become impossible when 
complexity grows to national scale CI.  The cost of HIL in terms of inefficient use, delayed or incomplete 
discovery, or simply unavailability of CI components is now too high given CI is expensive and each 
implementation has a limited time-span window to make an impact. The current “top-down, human-in-the-
loop” approaches for its design, implementation, effective use and improvement are very limiting and prone 
to error. Studies [7] [8]  show that human actions contribute significantly to downtime, errors, and rework in 
CI implementations.  HIL is typically limited to being reactive (or retrospective), using a postmortem analysis 
of events, anomalies or performance.  Data-driven AI based techniques appear the best options for making 
predictive approaches possible.  
Ultimately, AI has opportunity to go beyond simply assisting or augmenting present CI capabilities. It will 
be used to explore new CI capabilities such as developing high-level scientific problem specification 
constructs that can discover and evaluate relevant resources (data sources, instruments, computation) and 
services (algorithms, models), testing promising workflows from such components, and providing end users 
with prototype workflows to explore a specified problem.   
How might AI approaches be used to address CI challenges? First, AI can reduce the complexity of 
designing and operating CI. A single and/or small system may consist of millions of interacting components, 
whereas a larger, national-class system may contain billions of components. Similarly, the amount of code 
used to implement the systems ranges from millions to billions of lines.  By definition, CI is highly 
interconnected and systems are co-dependent. This complexity makes systems that afford security and 
sustainability increasingly difficult to correctly design, build, and operate. Discovering services and 
optimizing their interaction in workflows in CI will require new, more scalable approaches than in the past. 
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Second, AI can reduce the delay in responding to conditions of interest. Almost all CI systems have 
significant limitations for data movement. To improve efficiency, workflows and overall system performance, 
mismatches responses to changes in conditions and delays in mitigation generation must be identified and 
alleviated. With the increased power of edge devices and the heterogeneity of network capabilities, 
emerging CI systems require complex orchestration of computation and data movement to reduce 
dependence on communications (e.g., reducing data volume) as well as to enable CI to act in real time 
despite having components that are tens of milliseconds or further apart. Concurrently, the use of 
embedded, wearable, or other personal devices expands the concept of CI. 
Third, AI can reduce “Time-to-discovery” and “Time-to-actionable insights” in CI operations. Data sizes and 
complexities limit human’s ability to discover anomalies, inefficiencies, bottlenecks, faults, security 
vulnerabilities, and cyber-attacks on time-scales appropriate for taking corrective actions.  AI methodologies 
can efficiently extract such insights from large, complex data. However, as CI workflows and services 
become more complex it will be essential to improve our ability to create systems that behave in a way that 
can be explained to ensure confidence in taking action upon AI-based results. 
Specifically, CI that is used across applications that require resources ranging from the farthest edge 
devices to the largest of facilities, from dedicated ultra-scale instruments to the broad range of distributed 
devices, from stationary to mobile and autonomous devices and systems. Brief review of a few exemplar 
use cases help explain the challenges and objectives of AI for CI, adding new use cases as more insight is 
gained. These exemplars include (i) mid- and large-scale data and computational facilities, (ii) CI for large 
scale observing instruments, (iii) CI for automated and robotic devices, and (iv) CI for widely distributed 
instruments whether it is in cities or national scale. Social science considerations for CI are shared among 
these cases. Each exemplars use has unique challenges but it is also possible to identify commonality that 
can be applied to all or are easily adapted for different CI implementations. We call these exemplars 
“Families of CI”. These similarities will be conducive to developing common algorithmic approaches, 
interfaces, and protocols which will likely also extend to many other areas including those necessary in 
complex industrial scenarios. These families represent opportunities for AI for CI but are not exhaustive, 
and indeed are expected to be expanded. 
Research Themes for Exemplar Families of Scientific CI: Computational and Data Systems: CI for 
computational and data analysis systems and facilities come in all sizes from a modest handful of compute 
nodes with a Network File System (NFS) to support common storage to complex High Performance 
Compute (HPC) systems consisting of tens of thousands of compute nodes and tightly integrated 
subsystems for supporting large scale data buffering and file I/O, to global scale cloud computing facilities. 
Across the spectrum of size, configuration and workload, C&D CI systems share the challenge of being 
used inefficiently. Application developers struggle determining the best algorithms to optimally utilize the 
increasing diversity of architectural features. These challenges are only getting worse with the ever-
increasing complexity of all compute, network and data technologies. Across all such facilities this not only 
translates into waste in terms of energy, idle resources, and human capital, but also restricts the rate and 
quality of insight and output and extends the time to solution of some of humanity’s most pressing problems.  
In order to optimize the utilization of our compute and data related resources and minimize the time to 
solution of the problems being run on these resources, the technology industry and consumers have been 
adding CI in the form of instrumentation, communication, and analysis infrastructure for collecting and 
analyzing detailed information about all aspects of operation. To date this additional CI increases the burden 
on support staff and users of the technology to understand the complex interactions represented by the 
information and has been used largely for diagnosing problems reported and performance bottlenecks. Due 
to the high volume (tens of TB/day per system) and high dimensionality (thousands of different 
instrumentation points) of data, humans are only able to use a small subset of the data for analysis and are 
often unable to identify root causes of problems. Additionally, delays between problem occurrence and 
diagnosis for all but the most trivial problems limit the utility of current CI systems with respect to automated 
feedback and optimization of run time resources and configuration [10]. 
Research Themes for Exemplar Families of Scientific CI: CI for Large Instruments: The CI demands for 
next generation instruments, such as the Large Synoptic Survey Telescope (LSST) [3], are expected to 
exceed existing CI capabilities [11]. Upgrades to existing facilities, e.g., the advanced Laser Interferometer 
Gravitational-wave Observatory (LIGO) [12], and the next generation Large Hadron Collider [13] already 
demand the use of CI that are beyond in-house, tailored solutions for core-data analyses, requiring the use 
of the Open Science Grid, and other HPC platforms such as XSEDE and Blue Waters [14] [15]. There is 
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an urgent need to rethink the existing CI paradigm to cope with the volume and speed of data production 
and analysis of large-scale facilities. 
The convergence of AI with cloud, mid- and top-tier HPC centers has rapidly emerged as an alternative to 
handle the disruptive effects of the big-data revolution in strategic NSF- and DOE-funded investments. 
While the design and training of AI algorithms requires novel cyber-tools, such as distributed training 
schemes in HPC platforms, once these algorithms are fully trained, they enable real-time inference studies 
using minimal resources. Convergence between existing CI and AI-HPC inspired CI solutions,  with 
expanded AI for CI technology, could boost and enrich the scientific capabilities of current and next-
generation big-data experiments [16]. This approach will leverage the expertise of system architects, 
resource managers, and software developers to use AI to automate diagnostics tools that optimize the 
performance and throughput of CI resources. AI for CI will also carry out data-driven analyses, informed by 
the high-dimensionality of the in-situ system and application telemetry data, to form logical hypotheses 
about the data features essential to understanding relationships among architectures, behavioral 
characteristics of applications, and performance, even in the absence of labelled associated application 
runs and conditions, alleviating the need for relying on limited benchmarks and regression testing that is 
common practice today. 
Research Themes for Exemplar Families of Scientific CI: CI for Automation and Robotics: AI based 
cyber-physical autonomous agents that directly assist or interact with humans are becoming ubiquitous [17] 
[18] [19] [20]. However, field-deployment of trustworthy, safe, and performant autonomous agents has the 
following two CI interrelated challenges. First, the lack of automated processes for design and development 
of an end-to-end field-deployable autonomous agent CI [21] [22]. Addressing the system challenges in 
design and development is critically important as evident from the delays in deployment of self-driving cars 
despite the showcase of a working concept of a functional AV in DARPA 2007 Urban Challenge [23] 13 
years ago. Towards this goal, new and innovative automated processes must be created for operating 
systems and computational kernels that meet energy, latency and deadline requirements, and 
methods/protocols for testing, failure mitigation, recovery, and safety. Moreover, these problems are 
increasingly more challenging in the context of autonomous swarms that are geared towards execution of 
shared tasks (e.g., search and rescue missions) as they require methods for remote management (from a 
base station) and coordination of geo-distributed agents (edge devices) in uncertain human-centric 
environments.  The second challenge is the lack of data, code, and knowledge sharing across the field of 
automation and robotics [24] [25]. There is a significant commonality across autonomous agents in the field 
of automation and robotics, such as self-driving vehicles, manufacturing/industrial/surgical robots, and 
delivery bots. This commonality spans CI requirements and specifications (e.g., remote management and 
coordination), meeting real-time deadlines for executing actions, and maintaining safety. Although agents 
operate at different levels of autonomy and perform significantly different tasks (e.g., human transportation 
vs. package delivery), the significant commonality among them can be leveraged by investment in 
standards to create reusable design, development, and deployment patterns to maximize safety, efficiency, 
and benefit to society. 
In order to test ML and AI algorithms for perception, decision, and control of autonomous agents, industry 
has developed several open-source comprehensive testbeds [26] and [27] that utilize real-time physics-
based simulators to support software-in-the-loop,  hardware-in-the-loop, and human-in-the-loop methods. 
This allows developers to iterate on architecture, design and implementation of the autonomous CI system 
and generate large amounts of data on execution time of computational tasks, their safety, and resilience.  
Unique AI opportunities for automation/robotics: AI approaches are promising as the current methods for 
design and development of safe CI for robotics and automation are fragile as it depends on painstakingly 
tuned heuristics and partial solutions with insufficient safety assurance. AI-techniques can leverage 
simulation and field datasets as well as domain knowledge to enable automatic design space exploration 
and development of CI components that are performant, safe and resilient. 
Research Themes for Exemplar Families of Scientific CI: Edge Systems and Distributed Intelligent 
Observatories: NSF has supported the creation of distributed observatories ranging in scale from urban 
(e.g., Array of Things (AoT) in Chicago [28]) to regional (e.g., WIFIRE in Southern California [29]) to 
continental (e.g, National Ecological Observatory Network (NEON) [30]). At each of these scales there is 
need for measurements outside of the capabilities of traditional sensors, aimed at sensing factors ranging 
from vehicle or pedestrian flows in cities or the migratory patterns of wildlife. Desired capabilities include 
the ability to modify sampling rates to suit current conditions (e.g., low sampling rates when nothing out of 
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the ordinary is going on and higher sampling rates surrounding events or conditions of interest that resolve 
desired detail) and the ability to aggregate and anonymize data to levels appropriate to types of information 
being collected (e.g., anonymous pedestrian and traffic flows vs. identification in the case of collisions and 
altercations). 
Industry has begun a transition to monitoring and control using Internet-of-Things (IoT) technologies and is 
rapidly adopting edge computation to embed AI algorithms. Whether in factories, electrical and gas 
distribution networks, or urban measurement instruments, edge computation supports the creation of 
“software-defined sensors” that, like software-defined networks, are remotely programmed to allow 
flexibility and evolution of their measurement capabilities.  
Unique AI opportunities for edge systems include: AI-at-the-edge can provide support for multiple types of 
CI needs, for instance enabling instruments to enhance communication conserving low-frequency samples 
with anomaly detection to trigger changes in sampling rates appropriate to resolve events or conditions of 
interest. For example, cameras deployed in cities need not stream and save (with significant privacy 
implications) video to central servers if their embedded intelligence can both extract routine measurements 
(e.g., pedestrian flows) and adapt to events of interest (such as a vehicle collision). As new CI capabilities 
move from prototypes to production scale, CI services in observatories such as NEON [31], AI will be 
increasingly critical to the operation and optimization of distributed components with high degrees of 
heterogeneity, diverse services, and in some cases intermittent connectivity. 
Social Science Influence on CI: The social, economic, and behavioral science communities have 
significant experience working with sensitive data, maybe more than do the other NSF-supported sciences 
and have grappled with the ethics of the use of “big data” [32].  The advent of smartphones, wearables, in-
home devices, and location-based services has brought CI squarely into social science research.  The pace 
and scale of the use of such CI in the social sciences are such that the privacy, security, and ethics of the 
CI, and moreover of the use of AI within these devices, require a central rather than supporting role for 
social science in the use of AI for CI. 
Equally important is the impact of AI for CI from the point of view of stakeholder trust--whether the 
correctness of results, the security of systems embedded in the public way and in homes, or the ethical 
application of AI in the use of associated data. Without trust, there will be no adoption. Initiatives must 
address increasing autonomy in order to reduce latency for making high-quality decisions in high-
consequence and/or complex scenarios with the goal of increased performance, efficiency, security and 
safety. CI is a place where domain scientists make high consequence decisions and getting those decision-
makers and their stakeholders to trust AI is going to be difficult unless its explainable and transparent in 
some way. In particular, there is a need to explore the partnership and trust between the AI-decision making 
tools and the humans for high risk tasks. 
AI for CI research areas include low- through high-risk scenarios. Low-risk scenarios without significant 
incoming bias can provide a good testbed for testing acceptance and assessing confidence in results. For 
example, HPC scheduling decisions to improve performance can be low-risk as long as the affected 
applications are not high-consequence. Assessing criteria for tradeoffs in explainability-transparency-
acceptance-latency change higher risk scenarios (e.g., more urgent computations, autonomous vehicles) 
will be critical to acceptance of the new methods. 
Common Challenge Themes: The research challenges identified across the exemplar CI families all share 
some common themes: 1) CI systems are so complex that only domain experts can make reasonable and 
repeatable optimization decisions and the complexity is growing exponentially, 2) decision making should 
be performed with minimal lag time for optimum performance but the consequences of those decisions, in 
terms of human welfare and/or monetary cost, can be high, 3) processing telemetry data is a “big data” 
problem in itself with requirements for low latency time to solution in the presence of perhaps incomplete 
data, 4) individual data values are bounded but the high dimensionality and variability in aggregate makes 
full ensemble processing, within effective latency bounds, currently impossible, 5) social aspects of trusting 
the judgment of a machine must be overcome for significant deployment, 6) workload and resource 
scheduling, swarm coordination/management, resiliency, energy efficiency, ease of use by developers and 
end user, and 6) lack of labeled datasets as well as the high-cost of generating labeled datasets for training. 
Across CI families, AI approaches will enable domain experts to automate the design space exploration of 
performant, safe and reliable CI, and unlock new use across the domains of science, health, agriculture, 
manufacturing, energy, and transportation by combining field datasets, simulation techniques and domain 
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knowledge. We believe that these similarities will be conducive to the development of common algorithmic 
approaches (including explainability), interfaces, and protocols which will likely also extend to areas such 
as weather forecasting using drones/aircraft and more.    
Conclusion: A National AI-for-CI effort that organizes a community of both CI and AI experts and 
stakeholders to focus on identifying the challenges and opportunities for AI to enhance and eventually re-
invent the CI is a critical national need.  Equally important is AI for CI efforts including leaders from some 
of the largest and most complex of NSF’s CI projects and operating observatories and facilities to bring a 
diverse set of stakeholders and experts together from both a disciplinary standpoint and a human 
standpoint.  The ubiquitous and foundational changes to be empowered by applying AI to CI require new 
perspectives from new communities that challenge traditional thinking embedded in nearly four decades of 
NSF-supported CI.  Simply put, only such a bold approach can yield insights and new concepts that are 
required to fully exploit AI in achieving the promise of increasingly broad, powerful, and intelligent CI in the 
coming decade
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